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Abstract. In this paper we present a case for arguing that psychometric properties 
of a mathematical item administered in a large-scale assessment (even “bad” 
psychometric properties) may be usefully connected to the didactic features of the 
task proposed and to the behaviour of the students. We analyse 354 items 
administered to grade 10 students in the frame of the Italian national evaluation 
system. This approach may provide interesting issues for educational research. 

Keywords: large-scale assessment, Rasch model, task design. 

Sunto. In questo articolo presentiamo un caso per mostrare come le proprietà 
psicometriche di una domanda di matematica somministrata in una valutazione su 
larga scala (anche proprietà “brutte”) possano essere utilmente messe in relazione 
con le caratteristiche didattiche della consegna e con il comportamento degli 
studenti. A questo scopo analizziamo 354 domande somministrate agli studenti di 
grado 10 nel contesto delle prove nazionali di valutazione in Italia. Questo approccio 
può fornire interessanti prospettive per la ricerca didattica. 

Parole chiave: valutazioni su larga scala, modello di Rasch, task design. 

Resumen. En este artículo presentamos un caso donde se muestra cómo las 
propiedades psicométricas de una pregunta de matemática dentro de un proceso de 
evaluación a gran escala (incluso las propiedades “negativas”) pueden ser 
relacionadas positivamente con las características formativas de la pregunta y con el 
comportamiento de los estudiantes. Para esto, analizamos 354 preguntas propuestas 
a estudiantes de grado 10 en el contexto de las pruebas nacionales de evaluación en 
Italia. Este enfoque puede proporcionar perspectivas interesantes para la 
investigación didáctica. 

Palabras claves: evaluación a gran escala, modelo de Rasch, diseño de tareas. 
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1. Introduction 
The debate on if and how a psychometric approach may provide useful 
information for educational research, and for mathematics education research 
in particular, is long-standing and yet animated (Primi, 2017). A general 
discussion on the use of large-scale assessment (LSA) data in research in 
mathematics education is reported in Meinck, Neuschmidt, and Taneva 
(2017), and De Lange (2007), where the information content of quantitative 
data is analysed. A major problem in the application of psychometric results 
related to large-scale assessment to the actual study of educational problems is 
the qualitative description and interpretation of the latent trait, that is to say of 
“what” is really measured by the assessment. One must consider this “what” in 
terms of its relationships with the epistemological status of the discipline 
involved and of the intended school curriculum.  

The first concern of psychometrists is the fitting of the empirical data with 
the statistical model chosen. This is fundamental, but of course researchers in 
education are more interested in how far the model provides information about 
the reality. Our research hypothesis is that a moderate item misfit do not need 
be interpreted necessarily as a limitation (of the test or even of the choice of 
the model), but as a potential source of information. We support this approach 
with the study of a case coming from the Italian national large-scale 
assessment in mathematics. We consider a group of nearly-misfitting items 
with similar psychometric features which can be linked to possible behaviours 
of students, due to classroom habits. Hence this moderate misfit throws lights 
over the relationship between the latent trait and the intended construct to be 
assessed (let us call it “mathematics learning according to the Italian 
curricula”). 

Although a lot of different methods and techniques have been proposed 
within the item response theory (IRT) to assess item fit, this topic still raises 
relevant questions to which not completely satisfactory answers have been 
given (e.g. Hattie, 1984, 1985; Embretson & Reise, 2000), especially 
regarding large-scale data (Gustafson, 1980). In such cases, in fact, the real 
objective to pursue nowadays is a definition of the extent to which deviation 
between expected and observed values can be considered tolerable. This 
objective cannot be completely achieved in the absence of specific hypotheses 
addressing the issue in order to understand (at least in part) the causes of the 
observed violation. The general issue that we tackle here is the proposal of a 
solution to this lack, via a mixed method based on the interpretation of 
misfitting item behaviour from a didactical point of view. In general, a 
misfitting behaviour is seen as problematic for the application and issues of 
analysis. The background assumption of this paper is that a misfitting 
behaviour of one or more items may contain information both about the actual 
construct measured by the test, and the misfitting item itself. 

In this paper, as an introductory example of this approach, we present a 
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close examination of one violation type, over-discrimination, which allows us 
to highlight some characteristics of items that, on the one hand, clarify the 
functionality of the employed statistical model and, on the other, offer some 
interesting avenues to explore regarding the nature of the phenomenon and 
spread some lights on students’ behaviour.  

In our investigation, besides the standard parameters used within the 
statistical model, fit control is based on the graphical inspection of item 
characteristic curves (ICCs), estimated by using the Rasch model (one of the 
most popular tools in educational research to estimate students’ ability), which 
allows the identification of deviations between observed and expected values 
for specific ability levels. This can be particularly useful in order to formulate 
specific hypotheses aimed at understanding and identifying some possible 
causes of violations.  

Our methodology may be framed as a mixed paradigm: we perform a 
qualitative interpretation of large quantitative data, analysed by means of the 
Rasch model and collected by the Italian national institute for the evaluation of 
the education system (INVALSI) to assess students’ ability both in maths and 
text comprehension, yearly, at grade 2 and 5 (primary school), at grade 8 
(lower secondary school) and at grade 10 (upper secondary school).  

We individuate a group of nearly-misfitting items with similar 
psychometric properties (in particular, a remarkable over-discrimination) 
whose specific common features suggest possible causality sequences and 
point to possible behaviours of students, due to classroom habits. We point out 
a possible relationship between psychometric properties of the results (the 
over discrimination), features of the item (distance from “standard” classroom 
tasks), and behaviour of students facing the task (in particular, of “low-
achieving” students). Of course, these conjectures need to be validated through 
ad hoc experiments and qualitative methods, and this is what we consider 
really interesting of this approach, in the light of the discussion mentioned 
above: the analysis of quantitative evidences, driven by suitable theoretical 
lenses, can suggest valuable research paths. 

In the discussion and in the conclusion sections, we explain how these 
results promote a general discussion of the interpretation of misfit. Finally, we 
underline that our case study is based on Italian data and we make explicit 
reference to features of Italian didactics praxis; nevertheless, our results show 
that our approach may provide a new light on the general interpretation of 
standard Rasch outputs, which are commonly used in educational research all 
over the world. 

 
 

2. Item fit control within the Rasch analysis 
In educational research, one of the most extensively employed models for the 
estimation of abilities and competences is the Rasch model (Rasch, 
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1960/1980). It belongs to the item response theory (IRT) and hypothesizes that 
a subject’s answer to an item depends on his/her relative ability, i.e. the 
subject’s intrinsic ability as compared with the difficulty of the item. 
Therefore, it is able to scale both subjects and items along the same latent trait 
(in our case, math ability) depending on students’ ability and items’ difficulty, 
respectively. 

The popularity of the Rasch model is due both to its intrinsic ease of use 
and its statistical properties (such as measurement invariance and specific 
objectivity), strongly desirable especially in large-scale assessment. These 
properties hold only if both the item and test functionality are consistent with 
theoretical assumptions underlying the Rasch model (Hambleton & 
Swaminathan, 1985):  
1) one-dimensionality (all items refer to a unique – or at least prevalent – 

latent dimension);  
2) local independence (the probability of correctly answering an item is 

stochastically independent from the probability of correctly answering any 
other item within the same test); 

3) monotonicity (the probability of a correct answer increases proportionally 
to student ability).  

Moreover, although conceptually distinct, one-dimensionality and local 
independence are strictly interrelated because, by definition, data are 
unidimensional when the answers are locally independent in relation to the 
same latent trait (McDonald, 1981). 

Although this topic is extremely relevant because the interpretability of 
results depends on its properties, this issue is still topical because it nowadays 
raises relevant questions wider than the method itself. In fact, over the years, a 
lot of different methods and techniques have been proposed to judge how well 
an IRT model represents data at the item, person, or model levels (for an 
updated overview, see for example Wu and Adams, 2013), but there are no 
procedures that result in research stating definitively that a particular model 
does or does not fit, or is or is not appropriate (Hambleton & Swaminathan, 
1985).  

For these reasons, IRT model-fit assessment is still an active area of 
research to this day, in particular for big data, where adequate fit level can 
rarely be observed (Wright, Linacre, Gustafson, & Martin-Löf, 1994). In fact,  

Though the ideal for measurement construction is that data fit the Rasch model, 
all empirical data departs from the model to some extent. (...) Conventional 
statisticians base their decisions on significance tests, but these are heavily 
influenced by sample size. (Wright et al., 1994, p. 370) 

In fact, “no model can ever be supposed to be perfectly fitted by data, so with 
a sufficiently large sample any model would have to be discarded” (Gustafson, 
1980, as cited in Wright et al., 1994, p. 370). On the contrary,  
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for large sets of data it is too destructive to let an ordinary significance test decide 
whether or not to accept a proposed statistical model [or data], because, with few 
exceptions, we know that we shall have to reject it even without looking at the 
data simply because the number of observations is so large. (Martin-Löf, 1974, 
p. 3) 

In other words, especially for large data set, the real question is: How much 
unmodelled noise is tolerable?  

In light of this, the aim of this paper is not to propose another 
method/technique to assess item (mis)fit but rather our objective here is to 
propose an alternative use, for researcher, practitioners and teachers as well, of 
traditional Rasch output as the basis of theoretical reflections about causes of 
item misfit. In this sense, we refer to the practical assessment of item fit in real 
situations, in relation to which a scientist often must use “his or her best 
judgment” (Embretson & Reise, 2000, p. 233).  

For these reasons, our general question is: How can Rasch analysis help 
educational researcher in developing his/her judgment? 
 
 
3. Methods and materials 
3.1. Methodology 
It is absolutely unquestionable that different methods have different strengths 
and weaknesses, and that a qual-quant approach often offers a way to bring 
different strengths together in the same research (Morgan, 1998) and to 
overcome some weaknesses of one technique by the help of another. In 
particular, in the present study, we combine quantitative evidence derived 
from the statistical Rasch model with a qualitative interpretation (by the means 
of didactical lens) in a case study, i.e. a methodological approach based on the 
combination of different techniques with “the purpose of illuminating a case 
from different angles (…) focusing on a particular phenomenon might be read 
as an investigation of a different phenomenon” (Johansson, 2003, pp. 3–6). 

In fact, although the Rasch model is a very useful tool for the analysis of 
students’ ability, we think that the interpretation of both persons’ and items’ 
parameters along the same latent trait should be broader than that commonly 
applied. We refer in particular to the interpretation of fit analysis. As pointed 
out in the previous paragraph, different fit measures exist within Rasch 
analysis and they are particularly relevant in order to understand if and how 
data fit the Rasch theoretical assumptions. From our perspective, deviations 
from a model’s expectation (i.e. misfit) may provide significant information 
about students’ answering strategy behaviour and, therefore, they can support 
our research to formulate some specific hypotheses about mechanisms 
underlying items’ misfit. 
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3.2. Data collection 
In this study, we use data collected by the Italian national institute for the 
evaluation of the education system (INVALSI), from 2010 up to 2017, at 
grade 10 (second year of upper secondary school, 15- or 16-year-old students). 
Each year, the INVALSI system administers a math achievement test aimed at 
assessing mathematical competence, i.e.  

the ability to develop and apply mathematical thinking in order to solve a range 
of problems in everyday situations. Building on a sound mastery of numeracy, the 
emphasis is on process and activity, as well as knowledge. Mathematical 
competence involves, to different degrees, the ability and willingness to use 
mathematical modes of thought (logical and spatial thinking) and presentation 
(formulas, models, constructs, graphs, charts). (European Parliament and Council, 
2006, p. 15) 

In line with this definition, all math achievement tests administered by 
INVALSI are aimed at exploring this specific ability as clearly outlined and 
more extensively detailed by the Quadro di riferimento (framework of 
reference) and Indicazioni Nazionali per il curriculum (National Guidelines 
for the Curriculum), both of which are available on the INVALSI website.  

From 2010 up to 2017, INVALSI has administered 354 math test items at 
grade 10, at census level and, at the same time, to randomly selected classes 
on a national scale. In these classes, test administration is supervised by an 
external examiner delegated by INVALSI in order to guarantee the fairness of 
administration procedure and to prevent cheating. Thus, for the purposes of 
the present study, we analyse sample data. Case numerosity is shown in 
Table 1. 

All these items have been analysed and classified depending on their 
psychometric functionality. In fact, as previously pointed out, for big data at 
least, “no model can ever be supposed to be perfectly fitted by data” 
(Gustafson, 1980, as cited in Wright et al., 1994, p. 370). Therefore, in order 
to assess item fit, we need to refer to tolerance intervals within which 
deviation between observations and expectations is not unproductive for 
measurement. Simulation studies on this topic have produced a general 
tolerance interval (i.e. productive for measurement), ranged into the interval 
[0.80; 1.20] (Wright et al., 1994; Linacre, 2002; INVALSI, 2015, 2016, 2017). 
Nevertheless, according to the authors, critical tolerance intervals should not 
be defined a priori. Thus, we have used big INVALSI data to adapt Wright’s 
intervals to the Italian data. To this end, we have analysed and classified all 
data collected by INVALSI, year by year, from 2010 up to 2017 (354 items) 
according to their psychometric functionality (normal/misfitting).  
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Table 1 
Students involved year by year 
  Case numerosity N. of test items 

 Population 385411  
2010–2011   53 

 Sample 11.7%  
 Population 413847  

2011–2012   54 
 Sample 10.1%  
 Population 418243  

2012–2013   50 
 Sample 9.1%  
 Population 410609  

2013–2014   54 
 Sample 9%  
 Population 288248  

2014–2015   53 
 Sample 9.5%  
 Population 349263  

2015–2016   52 
 Sample 8.9%  
 Population 392396  

2016–2017   59 
 Sample 8.8%  

Source: our elaboration on INVALSI data 
 
 
We have observed three main intervals (type A, B, and C), as shown in 
Table 2, according to items’ weighted MNSQ, a typical fit measure within the 
Rasch framework. In INVALSI dataset, we have observed three tolerance 
empirical intervals and have classified them in three categories. The first and 
the second intervals, respectively equal to [0.95; 1.05] (type A) and [0.90; 
1.10] (type B), comprise around 70% of items administered in each 
achievement test and both guarantee fair parameter estimations. The third 
interval (type C) contains items with weighted fit index lower than 0.90 or 
higher than 1.10. 
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Table 2 
Misfitting items by category 
 
 
 
 
 
 
In the present study, we focus our attention on over-discriminating items. In 
particular, we have selected them according to two criteria: 1) weighted 
MNSQ lower than 0.90; and, 2) percentage of missing values equal to or 
greater than 20%. This percentage has been observed especially at the bottom 
of the latent trait (i.e. in correspondence with lower-ability levels) but we have 
observed the combination of both features irrespectively of an item’s 
difficulty. Thus, items selected here are characterized by high, medium, and 
low difficulty, in the same percentage. From 2010 to 2017, from among over 
354 items administered by INVALSI, 35 matched the first criterion (weighted 
MNSQ lower than 0.90), 15 of which also matched the second criterion 
(percentage of missing values equal to or greater than 20%). We name this 
group of items o-DM (in order to collect all main features of selected items, 
i.e. their over-discrimination and the high percentage of missing values). In 
order to propose an in-depth investigation of our selected items, we select and 
present items in the following paragraph 4 (Feagin, Orum, & Sjoberg, 1991). 
Over-discrimination can be caused by different factors, such as response 
dependence (i.e. a violation of item independence as requested by the Rasch 
model, according to which a student’s answer depends on his/her response to 
one or more previous items) but it can also be caused by other factors, such as 
item formulation. All o-DM items do not violate the independence assumption 
and do not seem to be affected by the factors cited above. 
 
3.3. The graphical inspection of the item characteristic curve 
In order to interpret all discrepancies between observed and expected item 
behaviour, we present a fit analysis based on graphical inspection of the item 
characteristic curves (ICCs).  

The graphical inspection of ICC allows the identification of different 
answering behaviour profiles. In fact, each ICC is a logistic regression line, 
with item performance regressed on examinee ability, which links a student’s 
probability of success on an item to the trait measured by the set of test items. 
The probability of a correct answer is estimated by comparing the student’s 
intrinsic ability (i.e. the level of skill held by the student) and item difficulty 
(i.e. the level of skill that the student must have to correctly answer). As 
previously said, since the Rasch model hypothesizes that just student ability 

Item type Number of items (from 2010 to 2017) 
Type A (INFIT ranged [0.95; 1.05]) 148 (42% over 354 items) 
Type B (INFIT ranged [0.90; 0.95[ U ]1.05; 1.10]) 97 (27% over 354) 
Type C (INFIT lower than 0.90 or higher than 1.1) 111 (31% over 354) 

Source: Our elaboration on INVALSI data 
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and item difficulty determine the interaction between person and item, it 
generates a very sturdy estimation environment “against which to test data for 
the presence of anomalous behaviour that may influence the estimation of item 
and person parameters. This identification (…) addresses any potential 
measurement disturbance” (Smith, 1993, p. 262). For this reason, the graphical 
inspection of the ICC seems a very adequate method for the study of 
discrepancy between estimated and observed probability of correctly 
answering an item. In this sense, the observation of such deviations allows 
control of the consistency between the dataset and model’s theoretical 
assumptions, with particular attention to cumulativity, according to which 
students with higher ability levels must have a higher probability of correctly 
answering a higher number of items than other students.  

Since different software produce different outputs, we have used and 
compared both RUMM2030 and ConQuest 4.0. However, in this study, they 
show very similar results. Thus, in the following paragraph, we present output 
provided by ConQuest 4.0. Since ConQuest provides output belonging to both 
the classical test theory and the Rasch analysis, for each item, we report: 
• Discrimination index. In addition to Rasch analysis, ConQuest performs 

also a traditional item analysis for all of the generalised items, including 
item discrimination index. In particular, ConQuest provides the item point-
biserial (discrimination) as a correlation between the item scores and the 
test scores, formed by all items in the test or formed by all of the rest items 
in the test (Le, 2012). In the light of the classical test theory, items 
showing a high point-biserial coefficient differentiate subjects depending 
on their ability better than items showing a lower coefficient (Barbaranelli, 
Natali, 2005). In other words, the point-biserial coefficient measures the 
relationship between the item score and the test score: the higher the 
correlation is, the higher the item validity is (i.e., its capacity to reveal the 
latent trait). Therefore, we interpret the point-biserial correlation by 
category as an index of consistency between students’ answering 
behaviour (observed in each answer group) and the overall test. 

• Weighted MNSQ. A synthetic index belonging to the Rasch framework, 
used to assess fit between data and model theoretical assumptions. The 
weighted MNSQ, developed by Rasch (1960/1980) and Wright (1977), can 
test violations of the model assumptions of no-guessing and homogeneity 
of item discrimination. It has expectation 1.0, and range from 0 to infinity. 
Mean-squares greater than 1.0 indicate underfit to the Rasch model, i.e., 
the data are less predictable than the model expects. For example,  

a mean-square of 0.7 indicates a 30% deficiency in Rasch-model-predicted 
randomness (i.e., the data are too Guttman-like), which implies 100·(1 –
 0.7)/0.7 = 43% more ambiguity in the inferred measure than modelled (e.g., 
the item difficulty estimated from low-ability persons differs noticeably from 
the item difficulty estimated from high-ability persons). (Wright et al., 1994, 
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p. 370) 

Mean-squares less than 1.0 indicate overfit to the Rasch model, i.e., the 
data are more predictable than the model expects. For example, “A mean-
square of 1.2 indicates that there is 20% more randomness (i.e., noise) in 
the data than modelled” (Wright, et al. 1994, p. 370). Items showing a 
weighted MNSQ minor than 1.00 are called over-discriminating and we 
focus our attention on them. 

• Item characteristic curve (ICC). Coherently with Rasch theory, ICC 
expresses the estimated probability of successfully endorsing an item 
while taking into account students’ relative ability and the distribution of 
observed correct answers provided by students clustered by their own 
ability level. The ConQuest graphical output plots, into the same graph, 1) 
the observed probability of correctly answering an item by category (i.e., 
A – B – C – D for multiple-choice items or 0 – 1 for binary items); and, 2) 
missing values. 

 
 
4. Results 
In this paragraph, we show our item selection, in particular those over-
discrimination with a high percentage of missing values, in particular at the 
lower end of the latent trait, selected over the 354 administered between 2010 
and 2017. 

A paradigmatic example of our analysis is question D8 administered in 
2011 to grade 10 students (hence, attending the 2nd grade level of upper 
secondary school- 15- or 16-year-old students) (Figure 1).  
 
 
 
 

 
 
 
 
 
 
 

Figure 1. Item D8 administered by INVALSI in 2011 at grade 10. 
 
 
Item D8 is an open-answer item as shown in the following figure. Its content 
is related to proportionality. The task is proposed in a real context and students 
were allowed to use a calculator. In Figure 2, we report the item characteristic 
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curve, by category (i.e. a line for each answer option and for missing values – 
coded 7 and 9 – is drawn into the same graph). In the figure, the blue line 
represents the model probability of giving the correct answer (i.e. the 
probability of correctly answering this item as estimated by the Rasch model 
for all students for each ability level) (Figure 2).  
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

Figure 2. Item characteristic curve by category, item D8 administered by INVALSI in 
2011 at grade 10. Note. D8 is open-ended item. Answer categories for this item are: 0 
= wrong answer; 1 = correct answer; 9 = missing. Therefore, categories 2, 3, and 4 
(included by ConQuest by default) do not represent any answer option and thus these 
categories are represented by the lines overlapping the x-axis. 

 
 

In Table 3, we report some descriptive information provided by ConQuest. For 
item D8, we process 43,458 cases. This item shows high discrimination, 
according to the classical test theory (i.e. the item’s power to differentiate 
students according to their math competence), equal to 0.63 (Alagumalai & 
Curtis, 2005). Its item parameter estimated by the Rasch model is equal to 
+0.33 (i.e., medium difficulty level). For all items, in fact, the estimated 
student ability/item difficulty are scaled on the same latent trait, empirically 
ranged in the interval [–2; +2] logit, where 0.00 represents medium 
ability/difficulty level; negative parameters (progressively) indicate low 
ability/difficulty levels; and, positive estimates (progressively) indicate high 
ability/difficulty levels. For this item, the weighted MNSQ index is less than 
1.00 (0.82). It highlights an over-discrimination, but without negative 
consequences on parameter estimations according to tolerance intervals 
proposed by Wright et al. (1994) and Linacre (2002), and subsequently 
employed by the INVALSI to assess item fit (for further details, see 
INVALSI, 2015, 2016, 2017). Finally, a case count (and relative percentages) 
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reported for each answer option show a high percentage of missing values 
(26.04%), especially in the low end of distribution as shown in the previous 
figure, and a high point-biserial correlation, by answer category. The latter is a 
common index used in item traditional statistics to assess item quality and it 
refers to the degree to which an item differentiates correctly (i.e. neither more 
nor less than what is predicted by the model) among examinees in the 
behaviour that the test is designed to measure. Typically, for both multiple 
choice and open-answer items, we observe a positive point-biserial 
discrimination for the correct answer and negative point-biserial 
discrimination for each of its distractors or wrong answers (Millman & Green, 
1989). In this case, we observe a high point-biserial coefficient for both 
correct answer (Pt Bis = 0.63) and missing values (Pt Bis = –0.40) (Table 3).  

 
 

Table 3 
Item analysis, Item D8 administered by INVALSI in 2011 at grade 10 

 
 
 
 
 
 
 
 
 
 
 
A similar item functionality can be observed for question D24, as administered 
by INVALSI in 2012 (Figure 3). 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Item   D8       
Cases for this item 43458       
Weighted MNSQ 0.82       
Item parameter 0.33       

Label Score Count % of total Pt. Bis t (p) PV1Ag:1 PV1 SD:1 
0 0.00 13076 30.09 -0.28 -61.95(.000) -0.40 0.75 
1 1.00 18606 42.81 0.63 168.34(.000) 0.67 0.87 
7 0.00 197 0.45 -0.04 -7.72(.000) -0.55 0.76 
9 0.00 11579 26.64 -0.40 -91.53(.000) -0.62 0.74 

Note. 0 = wrong answer; 1 = correct answer; 7 = not valid answer (treated as missing); 9 = missing answer. 
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Figure 3. Item D24 administered by INVALSI in 2012 at grade 10. 
 
 

Item D24 is a multiple-choice item. The item’s intent here is to explain the 
different steps leading to application of the Pythagorean theorem in a real 
context (Figure 4).  
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Figure 4. Item characteristic curve by category, item D24 administered by INVALSI 
in 2012 at grade 10. Note. D24 is open-ended item. Answer categories for this item 
are: 0 = wrong answer; 1 = correct answer; 9 = missing. Therefore, categories 2, 3, 
and 4 (included by ConQuest by default) do not represent any answer option and thus 
these categories are represented by the lines overlapping the x-axis. 
 

 
For item D24, we process 41,812 cases. This item has a high discrimination 
index, equal to 0.59. Its parameter (item difficulty) is high on the Rasch scale 
(equal to +1.15). The INFIT measure is less than 1.00 (equal to 0.84) and 
indicates a strong item over-discrimination, without causing any significant 
bias in parameters estimation (according to Linacre, 2002; Wright et al., 
1994). Case count (and relative percentages) reported for each answer option 
show a very high percentage of missing values (43.79%), especially in the low 
end of distribution as shown in the previous figure. Finally, point-biserial 
coefficient by answer category shows a strong correlation between students’ 
answering behaviour for both the correct answer (Pt Bis = +0.59) and the 
missing values (Pt Bis = –0.41). This means that students’ answering 
behaviour in these categories is consistent to what the test is designed to 
measure (math competence). Instead, point-biserial correlation calculated for 
the wrong category is very low (Pt Bis = –0.13), thus suggesting that 
something different from the measured construct might lead students to 
provide a wrong answer (Table 4).  
 
 
 
 
 
 
 
 



Bolondi G. e Cascella C. • A mixed approach to interpret large-scale assessment 
psychometric results of the learning of mathematics 

 

 

 

269 

Table 4 
Item analysis, Item D24 administered by INVALSI in 2012 at grade 10 

 
 

 
 
 
 
 
 
 
Another interesting case is item D17 administered by INVALSI in 2014 
(Figure 5). 
 
 
 
 
 
Figure 5. Item D17 administered by INVALSI in 2014 at grade 10. 
 
Item D17 is an open-answer item, and differently from the previous ones it is a 
non-contextualized item, but it is not a standard task in Italian school: given 
the solution, the student has to determine the parameters of the equation, 
whilst, usually, he/she has to determine the solution (Figure 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Item characteristic curve by category, item D17 administered by INVALSI 
in 2014 at grade 10. Note. D17 is open-ended item. Answer categories for this item 
are: 0 = wrong answer; 1 = correct answer; 9 = missing. Therefore, categories 2, 3, 
and 4 (included by ConQuest by default) do not represent any answer option and thus 
these categories are represented by the lines overlapping the x-axis. 

Item   D24       
Cases for this item 41812       
Weighted MNSQ 0.84       
Item parameter  1.15       

Label Score Count % of total Pt. Bis t (p) PV1Ag:1 PV1 SD:1 
0 0.00 11555 27.64 -0.13 -26.80(.000) -0.19 0.83 
1 1.00 11562 27.65 0.59 148.86(.000) 0.89 0.85 
7 0.00 386 0.92 -0.04 -8.79(.000) -0.42 0.94 
9 0.00 18309 43.79 -0.41 -90.62(.000) -0.44 0.85 

Note. 0 = wrong answer; 1 = correct answer; 7 = not valid answer (treated as missing); 9 = missing answer. 
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For item D17, we processed 36,932 cases. Similarly, to previous items, item 
D17 has a high discrimination index, equal to 0.57, and a medium-high level 
of difficulty on the Rasch scale (equal to +0.87). The weighted MNSQ is low 
(0.88) and indicates a strong item over-discrimination, without causing 
significant bias in parameters’ estimation (Linacre, 2002; Wright et al., 1994). 
Finally, the case count (and relative percentage) reported for each answer 
option shows an insignificant percentage of inadmissible answers (less than 
1%), a substantial equal distribution between wrong and correct answer, and 
very high percentage of missing values (39.38%), especially in the low tail of 
distribution as shown in the previous figure. Finally, point-biserial coefficient 
by answer category shows a strong correlation between students’ answering 
behaviour for both the correct answer (Pt Bis = +0.50) and the missing values 
(Pt Bis = –0.41). This means that students answering behaviour in these 
categories is consistent to what the test is designed to measure (math 
competence). Instead, point biserial coefficient calculated for the wrong 
category is very weak (Pt Bis = –0.07), probably suggesting that something 
different from the measured construct might lead students to provide a wrong 
answer (Table 5). 
 
 
Table 5 
Item analysis, Item D17 administered by INVALSI in 2014 at grade 10 

 
 

 
 
 
 
 
 
 
 
 
The following item D20 (Figure 7), administered by INVALSI in 2014, 
requires the solution of a task in a real context. It demonstrates very similar 
behaviour to the previous item, with a high percentage of missing values, 
although the item parameter (i.e. its estimated difficulty) is not very high 
(0.61) (Figure 8). 

 
 
 
 
 

Item     D17       
Cases for this item 36932       
Weighted MNSQ 0.88       
Item parameter 0.87       

Label Score Count % of total Pt. Bis t (p) PV1Ag:1 PV1 SD:1 
0 0.00 10379 28.1 -0.07 -12.65(.000) -0.110 0.720 
1 1.00 11748 31.81 0.5 110.74(.000) 0.630 0.790 
7 0.00 261 0.71 -0.03 -6.35(.000) -0.330 0.730 
9 0.00 14544 39.38 -0.41 -86.35(.000) -0.430 0.690 

Note. 0 = wrong answer; 1 = correct answer; 7 = not valid answer (treated as missing); 9 = missing answer. 
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Figure 7. Item D20 administered by INVALSI in 2014 at grade 10. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Item characteristic curve by category, item D20 administered by INVALSI 
in 2014 at grade 10. Note. D20 is open-ended item. Answer categories for this item 
are: 0 = wrong answer; 1 = correct answer; 9 = missing. Therefore, categories 2, 3, 
and 4 (included by ConQuest by default) do not represent any answer option and thus 
these categories are represented by the lines overlapping the x-axis. 

 
 

For item D20, we process 36,932 cases. This item has a high discrimination 
index, equal to 0.61. The weighted MNSQ is low (0.82) and thus indicates a 
strong item over-discrimination, without causing significant bias in parameters 
estimation (according to Linacre, 2002; Wright et al., 1994). Also in this case, 
we observe a very high percentage of missing values (47.94%), especially in 
the low end of distribution as shown in the previous figure. This is not one of 
the most difficult items within the achievement test and this percentage does 
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not seem attributable to other factors. In a similar manner to the previous 
items, point-biserial coefficient by answer category shows a strong correlation 
between students’ answering behaviour for both the correct answer 
(Pt Bis = +0.57) and the missing values (Pt Bis = –0.51).  

This means that students’ answering behaviour in these categories is 
consistent to what the test is designed to measure (math competence). Instead, 
point-biserial correlation calculated for the wrong category is very weak (Pt 
Bis = –0.05), probably suggesting that something different from the measured 
construct might lead students to provide a wrong answer (Table 6). 
 
 
Table 6 
Item analysis, Item D20 administered by INVALSI in 2014 at grade 10 
 
 
 
 
 
 
 
 
 
5. Discussion 
I quesiti sono stati somministrati a 343 alunni sui 349 inizialmente coinvolti; 
alcuni non li hanno potuti risolvere per vari motivi contingenti. 

By employing our methodological strategy to all answers to the items 
administered at grade 10 by INVALSI year by year, from 2011 to 2017, we 
individuated a group of items whose weighted MNSQ can be deemed 
acceptable (i.e. between 0.80 and 0.90) although not completely coherent to 
Rasch theoretical assumptions. We performed a qualitative analysis of these 
items, in particular of those showing the most relevant over-discrimination 
between the 354 items of the dataset. 

None of these items present problems regarding the formulation (task 
posing), nor do they violate the local independence assumption. These items 
tackle different mathematical contents, and they feature a wide range of 
difficulty – from medium to high (with item parameter from 0.33 to 1.44, on 
the Rasch scale, in their tests). 

Nevertheless, they show common features in the formulation and type (the 
input): they are open-ended items, and they can require either a single short 
answer (such as the result of an arithmetic operation) or a longer text passage 
to discuss and propose a solution. They are items in a context (real or 

Item    D20       
Cases for this item 36932       
Weighted MNSQ 0.82       
Item parameter 0.67       

Label Score Count % of total Pt. Bis t (p) PV1Ag:1 PV1 SD:1 
0 0.00 5666 15.34 -0.05 -9.95(.000) -0.120 0.700 
1 1.00 13212 35.77 0.57 134.92(.000) 0.650 0.740 
7 0.00 348 0.94 -0.04 -8.47(.000) -0.400 0.660 
9 0.00 17706 47.94 -0.51 0.00(.000) -0.440  

Note. 0 = wrong answer; 1 = correct answer; 7 = not valid answer (treated as missing); 9 = missing answer. 
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mathematical), where the correct answer does not follow from a direct 
application of a knowledge or a procedure. What is required, instead, is the 
skill of recognizing in an unusual situation (for Italian praxis) the underlying 
well-known mathematical concepts. They are related to the process that the 
OECD-Pisa framework calls “formulating”:  

The word “formulate” in the mathematical literacy definition refers to individuals 
being able to recognise and identify opportunities to use mathematics and then 
provide mathematical structure to a problem presented in some contextualised 
form. In the process of formulating situations mathematically, individuals 
determine where they can extract the essential mathematics to analyse, set up, and 
solve the problem. They translate from a real-world setting to the domain of 
mathematics and provide the real-world problem with mathematical structure, 
representations, and specificity. They reason about and make sense of constraints 
and assumptions in the problem. (OECD, 2013, p. 28)  

When we compare this task with the didactic praxis of Italian schools, we can 
see that this kind of task is not common (D’Amore, 2014).  

These items also have common features in the output, as synthesized by 
the distractor plot given by ConQuest. They have a weighted MNSQ between 
0.80 and 0.90: the model predicts more correct answers for low-ability 
students and fewer correct answers for high-ability students than those actually 
observed. Moreover, they are characterized by a very high number of missing 
answers, especially for students with low ability, and consequently a very low 
guessing level – far lower than that predicted by the model. We may 
conjecture a causal relationship between these facts: the high number of 
missing answers for low-ability students seem to cause a zeroing of the 
guessing. These “missing” correct answers contribute to an overestimation of 
the difficulty parameter (as estimated by the model on the whole population). 
High-ability students, therefore, provide more correct answers than predicted. 

We may interpret these facts on the assumption that student behaviour may 
be explained also as dependent on the specific features of the task: its 
typology, its relationship with classroom habits, but also the processes 
involved in answering. A natural interpretation of these facts as a whole is that 
low-ability students, when facing a task where learned facts and acquired 
abilities are not immediately recognizable, feel displaced and are more 
inclined to non-answering. For high-ability students this does not happen, and 
the items are in fact easier than those in the prediction of the model, hence the 
over-discrimination. We observe then that this over-discrimination – the 
quantitative datum given back by Rasch analysis – is related via our 
qualitative analysis to this low-ability students’ displacement, when facing a 
mathematization situation. Symmetrically, the capability of mathematically 
formulating a situation seems to be an element of strong discrimination 
between students. 
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6. Conclusion and further issues 
The study performed in this paper is based on a wide empirical dataset of 
mathematical items, gathered from the huge heritage of information collected 
by the INVALSI system over the years. 

Among the items administered, there are some which are correct in 
formulation, coherent with what is commonly perceived as mathematical skill, 
fitting with the framework of the Italian national curricula and the theoretical 
framework of the INVALSI large-scale assessment, hence perfectly 
admissible in a test assessing mathematical learning in the context. 
Nevertheless, they may still present features which are not completely fitting 
with the prediction of the model (even though their behaviour does not affect 
the overall reliability of the measurement). 

We focused our analysis on a group of over-discriminating items. Via a 
graphical inspection of the characteristic curves and the distractor plots, on 
one hand, and a qualitative analysis of the tasks, on the other hand, we 
highlighted a set of similar features of these items, both in their input 
(formulation, relationship with didactic praxis, etc.) and in their outputs 
(missing answers, guessing, etc.). 

This mixed approach allowed us to formulate a feasible interpretation of 
the misfit based on a conjectured behaviour of the students related to the 
specific features of the items These interpretations should be verified through 
an ad hoc qualitative experimental apparatus, based on a direct analysis of 
students’ behaviour. 

Our methodology, based on the integration of quantitative evidence given 
by Rasch analysis and the interpretation from a didactic point of view, 
suggests a new utilization of Rasch’s model also in the case of misfitting 
items. The deviation of empirical data from the expected theoretical line is a 
signal of a disturbance factor. Nevertheless, in our case this deviation and 
these factors can be explained and framed in a coherent setting. Hence, 
deviations from Rasch’s expectations (i.e. misfits) that do not cause concern 
from a psychometric point of view (i.e. they do not cause unfair estimations) 
can be conceived as a further “result” of the Rasch model because they may 
produce relevant information about students’ behaviour, allowing us to 
formulate some specific hypotheses. From a symmetric perspective, these 
items allow us to better outline the actual construct measured by the test. 
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